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We address the problem of estimating multiple parameters of a chaotic dynamical model from the observa-
tion of a scalar time series. We assume that the series is produced by a chaotic system with the same functional
form as the model, so that synchronization between the two systems can be achieved by an adequate coupling.
In this scenario, we propose an efficient Monte Carlo optimization algorithm that iteratively updates the model
parameters in order to minimize the synchronization error. As an example, we apply it to jointly estimate the
three static parameters of a chaotic Lorenz system.
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I. INTRODUCTION

An important topic of research in time series analysis of
nonlinear systems is the estimation of the parameters which
are needed in a numerical model in order to make it follow
the dynamics of the original system, from which a scalar
series of observations can be collected. Provided that the
functional form of the model is accurate enough, these esti-
mates can subsequently be used to track the dynamic system
state. The problem of parameter estimation can be tackled in
different ways, e.g., using multiple shooting methods �1,2� or
some statistical procedures based on time discretization and
other approximations �3–7�. However, these methods involve
the solution of high-dimensional minimization problems,
since not only the unknown parameters but also the initial
values of the trajectory segments between the sampling times
need to be estimated �2,8�.

Recently, several authors have suggested to take advan-
tage of the synchronization techniques of coupled chaotic
systems and turn them into accurate parameter estimation
methods �8–19�. This approach is appealing because the only
unknowns are the parameters to be estimated, hence only
low-dimensional optimization problems need to be tackled.

In most estimation methods, the unknown model param-
eters are handled as dynamic variables, with associated dif-
ferential equations that must be designed �in a nontrivial
way� to ensure convergence to the desired values �8–14�.
Recently, however, Sakaguchi has proposed, in �19�, a
method to adjust the model parameter values using chaos
synchronization and a Monte Carlo procedure which is con-
ceptually simple, effective, and for which the design of ad-
ditional differential equations is not necessary. A direct nu-
merical optimization of the error between the model and the
scalar time series is carried out instead.

In this paper, we focus on this scenario and propose a
parameter estimation method that takes advantage of chaos
synchronization and is based on a more efficient Monte
Carlo optimization procedure, known as accelerated random

search �ARS� �20�. The algorithm performs an iterative up-
date of the model parameters in order to minimize the syn-
chronization error between the available observations, col-
lected from the system of interest, and the model dynamic
variables. We will show that the ARS-based estimation algo-
rithm attains more accurate results than Sakaguchi’s tech-
nique, while remaining equally simple from a conceptual
viewpoint and having the same computational complexity.

The rest of the paper is organized as follows. In Sec. II,
we describe the problem of multiparameter estimation for
coupled dynamical systems. Section III contains a detailed
description of the proposed estimation method. An applica-
tion example, the estimation of the three static parameters of
a chaotic Lorenz system, is presented in Sec. IV. Finally, Sec.
V is devoted to the conclusions.

II. PROBLEM STATEMENT

We first introduce the mathematical model and notation to
be used throughout the rest of the paper. Let

ẋ = f�x,p� �1�

represent the primary chaotic system with state vari-
ables x= �x1 , . . . , xn��Rn and unknown parameters
p= �p1 , . . . , pm��Rm. If the functional form of �1� is
known, we can build a model, termed secondary system in
the sequel, as

ẏ = g�y,q� + Dsi�x − y� , �2�

with g identical to f, and where y= �y1 , . . . , yn��Rn is the
time-varying vector that contains the model state variables,
q= �q1 , . . . , qm��Rm is the adjustable parameter vector, D
is a coupling coefficient, and si :Rn→Rn is a vector function
that selects the ith element of its argument, i.e., si�x−y�
= �0, . . . , 0 ,xi−yi ,0 , . . . , 0�. The definition of the latter
function implies that coupling is performed only through the
scalar time series xi from the primary system.

Since we assume g= f, when the secondary parameter vec-
tor, q, coincides with the primary parameter vector, p, the
state variables y synchronizes with x for D�Dc, where Dc is
a coupling threshold �19�. On the contrary, if q�p then

*ines.perez@urjc.es
†joaquin.miguez@uc3m.es

PHYSICAL REVIEW E 76, 057203 �2007�

1539-3755/2007/76�5�/057203�4� ©2007 The American Physical Society057203-1

http://dx.doi.org/10.1103/PhysRevE.76.057203


complete synchronization cannot occur. However, the differ-
ence �y−x� is expected to be small whenever the difference
of the two parameter vectors is small and D is sufficiently
large. Therefore, the objective of a parameter estimation
method based on synchronization is to calculate a value q̂
such that �y−x��0, since the latter implies q̂�p.

III. PARAMETER ESTIMATION METHOD

Assuming that the scalar time series xi from the primary
system is observed during the time interval �0,To�, the value
of the parameters in the secondary system can be calculated
as the solution to the optimization problem �19�

q̂ = arg min
q

�U�q�� , �3�

where the cost function U�q�=	0
To
xi−yi
2dt is a quantitative

representation of the synchronization error between the pri-
mary and the secondary systems.

In �19�, a simple Monte Carlo optimization method is
proposed to solve problem �3�. While effective, this tech-
nique can show a very slow convergence. More efficient al-
gorithms, with similar complexity, can be designed, however.
Here, we introduce an iterative optimization technique based
on the ARS methodology of �20�. The proposed algorithm
can be outlined as follows:

�1� Initialization. Choose initial parameter values q̂�0�
= �q̂1�0� , q̂2�0� , . . . , q̂m�0��, maximum and minumum “search
variances,” �max

2 and �min
2 , respectively, and set �2�1�=�max

2 .
Also choose a contraction factor, ��1. Using the initial
parameter vector, q̂�0�, evaluate the associated cost U�q̂�0��.

�2� Iterative step. Let N�� ,�2� denote the Gaussian prob-
ability distribution with mean � and variance �2. Given the
�n−1�th parameter estimates, q̂�n−1�, with associated cost
U�q̂�n−1��, and the search variance value �2�n�, proceed
with the following steps.

�a� Randomly draw new parameter values

q̃i � N�q̂i�n − 1�,�2�n�� for i = 1, . . . ,m ,

and build the auxiliary parameter vector q̃= �q̃1 , . . . , q̃m�.
�b� Compute the associated cost, U�q̃�.
�c� If U�q̃��U�q̂�n−1��, then update the parameter esti-

mate, its associated cost, and the search variance value,

q̂�n� = q̃ ,

U�q̂�n�� = U�q̃� ,

�2�n + 1� = �max
2 .

Else, if U�q̃��U�q̂�n−1��, then preserve the old parameter
values,

q̂�n� = q̂�n − 1� ,

U�q̂�n�� = U�q̂�n − 1�� ,

and contract the search variance,

�2�n + 1� = �2�n�/� .

�d� If �2�n+1���min
2 , then set �2�n+1�=�max

2 .
The algorithm can be stopped after a fixed number of

iterations or when U�q̂�n����, for some prescribed ��0.
Note that the time evolution of the secondary system state, y,
must be recalculated at each iteration, since a new candidate
vector, q̃, is drawn each time

Intuitively, the proposed algorithm attempts to improve
the parameter estimates by adaptively constraining the search
variance around them. In other words, if a given parameter
vector has smaller cost than the proposed candidates during
several successive iterations of the algorithm, i.e.,

q̂�n� = q̂�n + 1� = ¯ = q̂�n + k� = q�,

then we can argue that q� is a good estimate, and hence it
should be close to the optimum parameter vector. In that
case, any better solution can be expected to be close to q�
and, therefore, it makes sense that the search variance be-
comes very small �as several contractions are applied succes-
sively�. When either we find a new vector with a smaller cost
or the search variance moves below a given threshold ��min

2 �,
we reset the search variance to its maximum value ��max

2 � in
order to give the algorithm a chance to find good solutions
that may lie far away from the current estimate. This is im-
portant for the optimization of cost functions with multiple
�and possibly sparse� minima, to avoid that the algorithm
becomes stuck in a local optimum.

Compared to the original ARS algorithm in �20�, the pro-
posed method uses Gaussian distributions with an adaptive
search variance in order to propose parameter estimates. In
�20�, a uniform distribution on intervals with adaptive length
is used instead. We conjecture that when the cost function,
U�q�, has many local minima, it can be hard to find adequate
maximum and minimum interval lengths that lead to fast
convergence of the original ARS method. The proposed
Gaussian ARS �GARS�, on the other hand, may exhibit faster
convergence to the global optimum because the domain of
the proposed parameter values is not deterministically
bounded.

Comparing the GARS method with the technique pro-
posed by Sakaguchi in �19�, we see that the latter does not
adaptively contract or expand the search variance. As a con-
sequence, estimation with Sakaguchi’s method is less accu-
rate than with the GARS, as will be numerically shown in
the next section.

IV. APPLICATION TO THE LORENZ SYSTEM

Let us illustrate the application of the proposed method by
way of an example that involves the Lorenz system. Thus,
we assume the primary system

ẋ1 = − p1�x1 − x2� ,

ẋ2 = p2x1 − x2 − x1x3,

ẋ3 = − p3x3 + x1x2, �4�

where x= �x1 ,x2 ,x3��R3 forms the state space. The fixed
parameters in Eq. �5� are p= �p1 , p2 , p3�= �10, 8

3 ,28�. The sec-
ondary system is
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ẏ1 = − q1�y1 − y2� + D�x1�t� − y1� ,

ẏ2 = q2y1 − y2 − y1y3,

ẏ3 = − q3y3 + y1y2, �5�

where y= �y1 ,y2 ,y3��R3 contains the state variables, q
= �q1 ,q2 ,q3��R3, and x1 is the time series from the primary
system, which is observed from time 0 to time To=50 time
units �t.u.�. Many types of coupling terms between systems
�4� and �5� that lead to chaos synchronization are possible,
but we have assumed the above form of coupling for the sake
of simplicity. Direct numerical simulations show that com-
plete synchronization, i.e., y1=x1, occurs for D�Dc=7.95
when q=p. For this reason, we have set D=9 for the numeri-
cal simulations in this section.

We have numerically integrated the two chaotic systems
using the fourth-order Runge-Kutta method with a time step

Ts=10−3 t.u. In this way, we obtain equally spaced samples
of both state vectors, x and y, at time instants t=nTs, for
n�N, and we can approximate the integral in the cost func-
tion U as

U�q� = �
0

To

�y1 − x1�2dt � Ts

n=0

N−1

�y1�nTs� − x1�nTs��2,

where N= �To /Ts�.
Within this simulation setup, we have applied both the

proposed GARS algorithm, with parameters �max
2 =1, �min

2

=10−5, and �=1.5, and the method by Sakaguchi, with fixed
search variance �2=1. Both Monte Carlo optimization algo-
rithms are iterated 8000 times, and the secondary system
must be integrated for each iteration. The initialization of the
parameter vector q is also the same for both techniques,
namely q̂�0�=p+ �−5,0.2,5�.

We first consider the normalized mean square error
�NMSE� attained in the estimation of each parameter, which
we have approximated by averaging over 200 independent
simulations. Specifically, let q̂i�n ,k� be the estimate of pi, i
=1,2 ,3, obtained in the kth simulation after n iterations of
the algorithm. The associated normalized square error is
Ei�n ,k�= ��pi− q̂i�n ,k�� / pi�2, i� �1,2 ,3�, and the NMSE is
the average

Ei�n� =
1

200

k=1

200

Ei�n,k�, i � �1,2,3� . �6�

We have additionally calculated the sample variance of Eq.
�6�, namely �i

2�n�= 1
200
k=1

200�Ei�n ,k�−Ei�n��2, i� �1,2 ,3�.
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FIG. 1. �Color online� Normalized mean square error �Ei�n�,
solid lines� and its variance ��i

2�n�, dashed lines� in the estimation
of p1 �upper plot�, p2 �middle plot�, and p3 �lower plot� versus the
iteration number. All three NMSEs have been averaged over 200
independent simulation trials.
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FIG. 2. �Color online� Example of synchronization between the
first dynamic variables of the primary and secondary systems, x1

and y1, respectively, when the GARS �upper plot� and Sakaguchi’s
technique �lower plot� have been used to compute the parameters of
the secondary system.
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Figure 1 shows the obtained results. The upper plot shows
the NMSE and its variance for parameter p1, i.e., curves
E1�n� and �1

2�n�, the middle plot shows the NMSE, E2�n�,
and its variance, �2

2�n�, for parameter p2, and the lower plot
shows the corresponding NMSE, E3�n�, and variance, �3

2�n�,
for parameter p3. We observe that the error is very similar in
the three cases for the GARS algorithm, Ei�8000��10−5 for
i=1,2 ,3, and it always outperforms Sakaguchi’s method, es-
pecially when estimating p1 and p3, while the advantage for
the estimation of p2 is not so large. In the first case �p1 and
p3� the NMSE achieved with the GARS technique is more
than one order of magnitude smaller, while in the second
case �p2�, the NMSE provided by the GARS algorithm is
approximately one-half of the error obtained via Sakaguchi’s
technique. Furthermore, we can also observe that the vari-
ance of the NMSE in the simulations is much smaller for the
GARS method.

In agreement with the previous results, the synchroniza-
tion between the primary and secondary systems is more
accurate, in the average, when the GARS estimation algo-
rithm is used to compute the desired values of q̂�n�. As an
example, Fig. 2 shows a typical realization of the state vari-
able y1 �together with the observed signal x1 from the pri-
mary system�, collected from the last iteration of both the
GARS method �upper plot� and Sakaguchi’s algorithm
�lower plot�.

V. CONCLUSIONS

We have addressed the problem of estimating the multiple
static parameters of a chaotic system from the observation of
a scalar time series. Our approach is based on the synchro-
nization properties of coupled chaotic systems. For the nu-
merical computation of the parameter estimates, we have
proposed a Monte Carlo optimization algorithm termed
Gaussian accelerated random search. The GARS is an itera-
tive method to find the parameter values that minimize the
synchronization error between the observed time series and a
model system. We have successfully applied the proposed
technique to the joint estimation of the three parameters of a
Lorenz chaotic system from which only one dynamic vari-
able can be observed.
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